Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 263: 124697, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262985

RESUMO

Although next-generation sequencing technology has been used to delineate RNA modifications in recent years, the paucity of appropriate converting reactions or specific antibodies impedes the accurate characterization and quantification of numerous RNA modifications, especially when these modifications demonstrate wide variations across developmental stages and cell types. In this study, we developed a high-throughput analytical platform coupling ultra-performance liquid chromatograph (UPLC) with complementary mass spectrometry (MS) to identify and quantify RNA modifications in both synthetic and biological samples. Sixty-four types of RNA modifications, including positional isomers and hypermodified ribonucleosides, were successfully monitored within a 16-min single run of UPLC-MS. Two independent methods to cross-validate the purity of RNA extracted from Caenorhabditis elegans (C. elegans) were developed using the coexisting C. elegans and Escherichia coli (E. coli) as a surveillance system. To test the validity of the method, we investigated the RNA modification landscape of three model organisms, C. elegans, E. coli, and Arabidopsis thaliana (A. thaliana). Both the identity and molarity of modified ribonucleosides markedly varied among the species. Moreover, our platform is not only useful for exploring the dynamics of RNA modifications in response to environmental cues (e.g., cold shock) but can also help with the identification of RNA-modifying enzymes in genetic studies. Cumulatively, our method presents a novel platform for the comprehensive analysis of RNA modifications, which will be of benefit to both analytical chemists involved in biomarker discovery and biologists conducting functional studies of RNA modifications.


Assuntos
Arabidopsis , Ribonucleosídeos , Animais , Cromatografia Líquida/métodos , Caenorhabditis elegans/metabolismo , Escherichia coli/metabolismo , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida de Alta Pressão/métodos , RNA/genética , RNA/química , Ribonucleosídeos/química , Arabidopsis/genética , Controle de Qualidade
2.
J Integr Plant Biol ; 65(3): 825-837, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36250681

RESUMO

Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas Heterotriméricas de Ligação ao GTP , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Transdução de Sinais , Proteínas Quinases Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Imunidade Vegetal , Regulação da Expressão Gênica de Plantas
4.
Sensors (Basel) ; 22(12)2022 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-35746338

RESUMO

To reduce the economic losses caused by bearing failures and prevent safety accidents, it is necessary to develop an effective method to predict the remaining useful life (RUL) of the rolling bearing. However, the degradation inside the bearing is difficult to monitor in real-time. Meanwhile, external uncertainties significantly impact bearing degradation. Therefore, this paper proposes a new bearing RUL prediction method based on long-short term memory (LSTM) with uncertainty quantification. First, a fusion metric related to runtime (or degradation) is proposed to reflect the latent degradation process. Then, an improved dropout method based on nonparametric kernel density is developed to improve estimation accuracy of RUL. The PHM2012 dataset is adopted to verify the proposed method, and comparison results illustrate that the proposed prediction model can accurately obtain the point estimation and probability distribution of the bearing RUL.


Assuntos
Redes Neurais de Computação , Probabilidade , Incerteza
5.
Plant Cell ; 32(8): 2457-2473, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32471863

RESUMO

Deep sequencing of DNase-I treated chromatin (DNase-seq) can be used to identify DNase I-hypersensitive sites (DHSs) and facilitates genome-scale mining of de novo cis-regulatory DNA elements. Here, we adapted DNase-seq to generate genome-wide maps of DHSs using control and cold-treated leaf, stem, and root tissues of three widely studied grass species: Brachypodium distachyon, foxtail millet (Setaria italica), and sorghum (Sorghum bicolor). Functional validation demonstrated that 12 of 15 DHSs drove reporter gene expression in transiently transgenic B. distachyon protoplasts. DHSs under both normal and cold treatment substantially differed among tissues and species. Intriguingly, the putative DHS-derived transcription factors (TFs) are largely colocated among tissues and species and include 17 ubiquitous motifs covering all grass taxa and all tissues examined in this study. This feature allowed us to reconstruct a regulatory network that responds to cold stress. Ethylene-responsive TFs SHINE3, ERF2, and ERF9 occurred frequently in cold feedback loops in the tissues examined, pointing to their possible roles in the regulatory network. Overall, we provide experimental annotation of 322,713 DHSs and 93 derived cold-response TF binding motifs in multiple grasses, which could serve as a valuable resource for elucidating the transcriptional networks that function in the cold-stress response and other physiological processes.


Assuntos
Temperatura Baixa , Desoxirribonuclease I/metabolismo , Genoma de Planta , Poaceae/genética , Cromatina/genética , Mapeamento Cromossômico , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Motivos de Nucleotídeos/genética , Especificidade de Órgãos/genética , Filogenia , Sequências Reguladoras de Ácido Nucleico/genética , Especificidade da Espécie , Estresse Fisiológico/genética , Sítio de Iniciação de Transcrição
6.
J Cell Physiol ; 234(12): 23695-23704, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31190357

RESUMO

Chronic hypoxic heart disease (CHD) is a common clinical type of congenital heart disease. Long noncoding RNA regulator of reprogramming (lncRNA-ROR) exerts an important regulating effect in cardiovascular diseases. In our study, we explored the effect of lncRNA-ROR and the possible mechanisms against hypoxia-caused apoptosis in H9c2 cells. H9c2 cells were exposed to hypoxia (1% O2 ) to construct the in vitro model of CHD. The level of lncRNA-ROR and microRNA (miRNA/miR)-145 was detected. To upregulate the level of lncRNA-ROR and miR-145, transfection was carried out. Western blot assay was performed to quantified protein expression. The interaction of lncRNA-ROR with miR-145 was verified by RIP and Dual-luciferase reporter assays. The expression of p53 and Bax was largely elevated and Bcl-2 was suppressed by hypoxia induction. We found that lncRNA-ROR was elevated by hypoxia. LncRNA-ROR overexpression was able to relieve the damages of H9c2 cells induced by hypoxia through rescuing viability, suppressing apoptosis, and blocking Cytochrome c release. miR-145 was suppressed by overexpressed lncRNA-ROR and the combination of miR-145 mimic was able to abolish the protective effect of lncRNA-ROR. Moreover, we found that lncRNA-ROR activated Ras/Raf/MEK/ERK and PI3K/AKT transduction cascades by suppressing miR-145. Besides, lncRNA-ROR directly targeted miR-145 and negatively modulated the level of miR-145. Our present study revealed that lncRNA-ROR protected H9c2 cells against hypoxia-caused damages by regulation of miR-145 through activating Ras/Raf/MEK/ERK and PI3K/AKT.


Assuntos
Apoptose/fisiologia , Hipóxia Celular/fisiologia , Cardiopatias/patologia , MicroRNAs/genética , RNA Longo não Codificante/genética , Animais , Linhagem Celular , Citocromos c/metabolismo , Coração , Cardiopatias/congênito , Sistema de Sinalização das MAP Quinases/fisiologia , Mitocôndrias/metabolismo , Miócitos Cardíacos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteína Supressora de Tumor p53/biossíntese , Proteína X Associada a bcl-2/metabolismo
7.
PLoS One ; 12(9): e0184289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28910323

RESUMO

Drought is a major abiotic stress that impairs growth and productivity of Italian ryegrass. Comparative analysis of drought responsive proteins will provide insight into molecular mechanism in Lolium multiflorum drought tolerance. Using the iTRAQ-based approach, proteomic changes in tolerant and susceptible lines were examined in response to drought condition. A total of 950 differentially accumulated proteins was found to be involved in carbohydrate metabolism, amino acid metabolism, biosynthesis of secondary metabolites, and signal transduction pathway, such as ß-D-xylosidase, ß-D-glucan glucohydrolase, glycerate dehydrogenase, Cobalamin-independent methionine synthase, glutamine synthetase 1a, Farnesyl pyrophosphate synthase, diacylglycerol, and inositol 1, 4, 5-trisphosphate, which might contributed to enhance drought tolerance or adaption in Lolium multiflorum. Interestingly, the two specific metabolic pathways, arachidonic acid and inositol phosphate metabolism including differentially accumulated proteins, were observed only in the tolerant lines. Cysteine protease cathepsin B, Cysteine proteinase, lipid transfer protein and Aquaporin were observed as drought-regulated proteins participating in hydrolysis and transmembrane transport. The activities of phospholipid hydroperoxide glutathione peroxidase, peroxiredoxin, dehydroascorbate reductase, peroxisomal ascorbate peroxidase and monodehydroascorbate reductase associated with alleviating the accumulation of reactive oxygen species in stress inducing environments. Our results showed that drought-responsive proteins were closely related to metabolic processes including signal transduction, antioxidant defenses, hydrolysis, and transmembrane transport.


Assuntos
Regulação da Expressão Gênica de Plantas , Lolium/metabolismo , Proteínas de Plantas/biossíntese , Proteoma/biossíntese , Proteômica , Estresse Fisiológico , Secas
8.
Front Plant Sci ; 7: 519, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27200005

RESUMO

Drought is a major environmental stress that limits growth and development of cool-season annual grasses. Drought transcriptional profiles of resistant and susceptible lines were studied to understand the molecular mechanisms of drought tolerance in annual ryegrass (Lolium multiflorum L.). A total of 4718 genes exhibited significantly differential expression in two L. multiflorum lines. Additionally, up-regulated genes associated with drought response in the resistant lines were compared with susceptible lines. Gene ontology enrichment and pathway analyses revealed that genes partially encoding drought-responsive proteins as key regulators were significantly involved in carbon metabolism, lipid metabolism, and signal transduction. Comparable gene expression was used to identify the genes that contribute to the high drought tolerance in resistant lines of annual ryegrass. Moreover, we proposed the hypothesis that short-term drought have a beneficial effect on oxidation stress, which may be ascribed to a direct effect on the drought tolerance of annual ryegrass. Evidence suggests that some of the genes encoding antioxidants (HPTs, GGT, AP, 6-PGD, and G6PDH) function as antioxidant in lipid metabolism and signal transduction pathways, which have indispensable and promoting roles in drought resistance. This study provides the first transcriptome data on the induction of drought-related gene expression in annual ryegrass, especially via modulation of metabolic homeostasis, signal transduction, and antioxidant defenses to improve drought tolerance response to short-term drought stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...